Phylogenomics: Gene Duplication, Unrecognized Paralogy and Outgroup Choice

نویسنده

  • Scott William Roy
چکیده

Comparative genomics has revealed the ubiquity of gene and genome duplication and subsequent gene loss. In the case of gene duplication and subsequent loss, gene trees can differ from species trees, thus frequent gene duplication poses a challenge for reconstruction of species relationships. Here I address the case of multi-gene sets of putative orthologs that include some unrecognized paralogs due to ancestral gene duplication, and ask how outgroups should best be chosen to reduce the degree of non-species tree (NST) signal. Consideration of expected internal branch lengths supports several conclusions: (i) when a single outgroup is used, the degree of NST signal arising from gene duplication is either independent of outgroup choice, or is minimized by use of a maximally closely related post-duplication (MCRPD) outgroup; (ii) when two outgroups are used, NST signal is minimized by using one MCRPD outgroup, while the position of the second outgroup is of lesser importance; and (iii) when two outgroups are used, the ability to detect gene trees that are inconsistent with known aspects of the species tree is maximized by use of one MCRPD, and is either independent of the position of the second outgroup, or is maximized for a more distantly related second outgroup. Overall, these results generalize the utility of closely-related outgroups for phylogenetic analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthology, paralogy and proposed classification for paralog subtypes.

The conceptual underpinning of the terms 'orthology' and 'paralogy' has been the subject of several recent publications [1–4]. The renewed interest in these descriptors of the evolutionary relationships among genes is not surprising given the need for unambiguous definitions in the fast-growing field of comparative and evolutionary genomics and the widespread confusion about the exact meanings ...

متن کامل

Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication.

We investigated patterns of rate asymmetry in sequence evolution among the gene pairs (ohnologs) formed by whole-genome duplication (WGD) in yeast species. By comparing three species (Saccharomyces cerevisiae, Candida glabrata, and S. castellii) that underwent WGD to a nonduplicated outgroup (Kluyveromyces lactis), and by using a synteny framework to establish orthology and paralogy relationshi...

متن کامل

Insights into cyclostome phylogenomics: pre-2R or post-2R.

Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep diver...

متن کامل

Phylogenetic Identification and Functional Characterization of Orthologs and Paralogs across Human, Mouse, Fly, and Worm

Model organisms can serve the biological and medical community by enabling the study of conserved gene families and pathways in experimentally-tractable systems. Their use, however, hinges on the ability to reliably identify evolutionary orthologs and paralogs with high accuracy, which can be a great challenge at both small and large evolutionary distances. Here, we present a phylogenomics-base...

متن کامل

Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell

Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009